Automated High-Throughput Quantification of Mitotic Spindle Positioning from DIC Movies of Caenorhabditis Embryos

نویسندگان

  • David Cluet
  • Pierre-Nicolas Stébé
  • Soizic Riche
  • Martin Spichty
  • Marie Delattre
چکیده

The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes) can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed and the accuracy of the automated tracking matches the precision of the human eye.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated segmentation of the first mitotic spindle in differential interference contrast microcopy images of C. elegans embryos.

Differential interference contrast (DIC) microscopy is a non-fluorescent microscopy technique that is commonly used to visualize the first mitotic spindle in C. elegans embryos. DIC movies are easy to acquire and provide data with high spatial and temporal resolution, allowing detailed investigations of the dynamics of the spindle-which elongates, oscillates, and is positioned asymmetrically. D...

متن کامل

The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos

BACKGROUND During metazoan development, cell diversity arises primarily from asymmetric cell divisions which are executed in two phases: segregation of cytoplasmic factors and positioning of the mitotic spindle - and hence the cleavage plane -relative to the axis of segregation. When polarized cells divide, spindle alignment probably occurs through the capture and subsequent shortening of astra...

متن کامل

Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos

During the first embryonic division in Caenorhabditis elegans, the mitotic spindle is pulled toward the posterior pole of the cell and undergoes vigorous transverse oscillations. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of its close relative Caenorhabditis briggsae. Compared with C. elegans, C. briggsae embryos exhibit an anterior...

متن کامل

Cytoplasmic Dynein Is Required for Distinct Aspects of Mtoc Positioning, Including Centrosome Separation, in the One Cell Stage Caenorhabditis elegans Embryo

We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation fai...

متن کامل

Cortical dynein is critical for proper spindle positioning in human cells

Correct spindle positioning is fundamental for proper cell division during development and in stem cell lineages. Dynein and an evolutionarily conserved ternary complex (nuclear mitotic apparatus protein [NuMA]-LGN-Gα in human cells and LIN-5-GPR-1/2-Gα in Caenorhabditis elegans) are required for correct spindle positioning, but their relationship remains incompletely understood. By analyzing f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014